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Abstract The special projective linear groups PSL(2� + 1) or L2(2� + 1) of order
2�(2�+1)(�+1) can be used to study atomic shells of electrons with angular momen-
tum quantum number � corresponding to the atomic p, d, f, and g shells for � =
1, 2, 3, 4, respectively. For the atomic g shell the group L2(9) is isomorphic with the
alternating group A6 on six objects of order 360 or the symmetry group of the 5-
dimensional simplex, a 5-dimensional analogue of the tetrahedron with 6 vertices and
15 edges. This leads to the subgroup chain SO(9) ⊃ SO(5) ⊃ L2(9) for the atomic
g shell analogous to the subgroup chain SO(7) ⊃ G2 ⊃ L2(7) ≈7O for the atomic
f shell. In the L2(9) group only the representations of spherical harmonics or sums
thereof, �(Y�), with dimensions dim �(Y�) or dim �(Y�)±1 divisible by 9 are found
to be individually reducible to irreducible representations (irreps) or sums of irreps of
L2(9). This leads to term groupings such as S, PD, G, PF, DH, L, PK, DI, FH, M, FI,
PO, DN, HK, R, etc., of increasing total dimension for the irreps of SO(9) for various
gn configurations in the atomic g shell.

Keywords Atomic g shell · Group theory · Alternating group A6

1 Introduction

The detailed study of the atomic d shell was initiated by Condon and Shortley [1]
in 1935 following earlier work by Slater [2] in 1929. In 1949 Racah [3] developed
group-theoretical methods for study of both the atomic d and f shells and in 1966
Wybourne [4,5] extended this approach to the atomic g shell, which is of potential
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interest in the study of the chemistry of superheavy elements. Other workers [6,7]
have subsequently studied the terms of the atomic g3 configuration in greater detail.

The relevant group theory uses infinite groups of the type SO(2�+1), which are the
rotation groups in 2�+1 dimensions corresponding to the 2�+1 states of an electron in
a shell with angular momentum quantum number �. A question that was subsequently
explored was the use of finite rather than infinite groups to study atomic shells. In this
connection Lo and Judd [8] suggested the use of the icosahedral group to study the
atomic d shell, an approach developed further in a recent paper by the present author
[9]. The icosahedral group, I , which is isomorphic with the alternating group on five
objects (A5) of order 60, is a Euclidean group. This means that it corresponds to a
symmetry point group in three dimensions so that the spherical harmonics S, P, D, F,
G,. . . individually can be expressed as irreducible representations (irreps) or sums of
irreps of the icosahedral group. Furthermore, the subgroup chain SO(5) ⊃ SO(3) ⊃ I
can be used to study the atomic d shell. An important feature of the icosahedral group
that allows it to be used to study the atomic d shell is the existence of a 5-dimensional
irrep, namely the H irrep, that corresponds to the five d orbital states.

The use of a similar finite group to study the atomic f shell requires a group with
a 7-dimensional irrep to represent the seven f orbital states. None of the symmetry
point groups in three dimensions, i.e., Euclidean groups, has any 7-dimensional rep-
resentations so a non-Euclidean permutation group is required for this purpose. Judd
and Lo [10] first suggested the simple group of order 168, known to mathematicians
as the special projective linear group PSL(7) or L2(7) and otherwise as the didodeca-
hedral group D or the heptakisoctahedral [11] group 7 O , for a study of the atomic
f shell. They noted that this group has an irrep of dimension 7, which can represent
the seven states of an f orbital. However, the non-Euclidean nature of 7 O means that
individual spherical harmonics cannot always be expressed as irreps or sums of irreps.
For example there is no way of representing the D spherical harmonic (L = 2) as an
irrep or irrep sum in 7 O , as suggested by the absence of 2- and 5-dimensional irreps
in 7 O .

In a recent paper [12] the present author shows how spherical harmonics can be
combined to become expressible as irreps or sums of irreps of 7 O . The key is to
combine the spherical harmonics where 2L , 2L + 1, or 2L + 2 is not divisible by
seven into pairs where the sum of the two 2L + 1 values are multiples of 7 (actually a
multiple of 14 since the combined 2L + 1 value for such a pair is always even). The
combined spherical harmonics thus appear in a series S, PH, DG, F, GM, HL, I, K,. . .
The relevant subgroup chain for the atomic f shell then becomes SO(7) ⊃ G7

2 ⊃ O ,
where G2 is an infinite group corresponding to an exceptional Lie algebra analogous
to the SO(3) group in the subgroup chain for the atomic d shell. The pairing of the
spherical harmonics in the atomic f shell required by the underlying 7 O group struc-
ture corresponds to terms appearing together in an f n state corresponding to a given
irrep of SO(7) or G2.

This paper explores an analogous approach to the study of the atomic g shell. Most
surprisingly, the alternating group on six objects, namely A6 of order 360, has the irrep
of dimension nine required for the nine states of a g orbital. Furthermore, A6, when
described alternatively as L2(9), is the next member of the series of special projective
linear groups L2(5) (≈ I ) and L2(7) (≈7O). The corresponding subgroup chain for
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the atomic g shell is SO(9) ⊃ SO(5) ⊃ A6. This can be seen by considering A6
as the five-dimensional symmetry point group of the analogue of the tetrahedron in
five dimensions, namely a simplex with six vertices (permuted in all ways by A6), 15
edges, 20 faces, 15 three-dimensional cells, and 6 four-dimensional hypercells.

2 The underlying finite groups

2.1 The special projective linear groups L2(p)

The most familiar applications of group theory in chemistry use symmetry point
groups, which describe the symmetry of molecules. The elements of symmetry point
groups can include only the standard symmetry operations in 3-dimensional space,
namely the identity (E), proper rotations (Cn), reflections (σ ), inversion (i), and
improper rotations (Sn). However, the concepts of group theory can also be applied
to more abstract sets such as the permutations of a set X of n objects. A set of per-
mutations of n objects (including the identity “permutation”) with the structure of a
group is called a permutation group of degree n and the number of permutations in the
set is called the order of the group [13]. Symmetry point groups can be regarded as
special cases of permutation groups, where the symmetry operations are considered
to be special types of permutations when applied to discrete sets of points or lines,
such as the vertices or edges of polyhedra.

Let A and X be two elements in a group. Then X−1 AX = B is equal to some
element in the group. The element B is called the similarity transform of A by X and
A and B are said to be conjugate. A complete set of elements of a group which are
conjugate to one another is called a class (or more specifically a conjugacy class) of
the group. The number of elements in a conjugacy class is called its order; the orders
of all conjugacy classes must be integral factors of the order of the group.

A group G in which every element commutes with every other element (i.e., xy =
yx for all x, y in G) is called an Abelian group. In an Abelian group every element is
in a conjugacy class by itself, i.e., all conjugacy classes are of order one. A normal
subgroup N of G, written N � G, is a subgroup that consists only of entire conjugacy
classes of G [14]. A normal chain of a group G is a sequence of normal subgroups
C1 � Na1 � Na2 � . . . Nas � G, in which s is the number of normal subgroups
(besides C1 and G) in the normal chain (i.e., the length of the chain). A simple group
is a group having no normal subgroups other than the identity group C1. The only
non-trivial simple group found as a symmetry point group is the icosahedral pure
rotation group, I , of order 60.

The finite groups relevant to the description of the atomic shells are the so-called
projective special linear groups designated as PSL(n) or L2(n) of which L2(5) is the
icosahedral rotation group I or the isomorphic alternating group A5. The L2(n) groups
are generated from a finite field Fp of p elements, which can be represented by the p
integers 0, . . ., p −1. Larger integers can be converted to an element in this finite field
by dividing by p and taking the remainder (i.e., the number is taken “mod p”). For
example, the finite field F5 contains the five elements represented by the integers 0, 1,
2, 3, and 4 and other integers are converted to one of these five integers by dividing by
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Table 1 Properties of the L2(p) Groups (3 ≤ p ≤ 11)

Group Order Conjugacy classes Isomorphisms

L2(3) 12 E + 4C3 + 4C2
3 + 3C2 A4 ≈ T

L2(5) 60 E + 12C5 + 12C2
5 + 20C3 + 15C2 A5 ≈ I ≈ L2(4)

L2(7) 168 E + 24C7 + 24C3
7 + 42C4 + 56C3 + 21C2

7 O or D

L2(9) 360 E +72C5+72C2
5 +90C4+40C3+40C2

3 +45C2 A6

L2(11) 660 E + 60C11 + 60C2
11 + 110C6 + 132C5 + 132C2

5+ 110C3 + 55C2
L2(13) 1092 E + 84C13 + 84C2

13 + 156C7 + 156C2
7 + 156C4

7+ 182C6 + 182C3 + 91C2

5 and taking the remainder, e.g., 6 → 1 in F5 (written frequently as “6 ≡ 1 mod 5”).
The group SL(2,p) is defined to be the group of all 2 × 2 matrices with entries in Fp

having determinant 1 and its subgroup PSL(2,p) or L2(p) for odd p is defined to be
the quotient group of SL(2,p) modulo its center, where the center of a group is the
largest normal subgroup that is Abelian. The group L2(p) is a simple group when p is
a prime number or a power of a prime number [15], e.g., 4 = 22 or 9 = 32. The groups
L2(4) and L2(5) are isomorphic and contain 60 elements and are also isomorphic to
the icosahedral pure rotation group I . The smallest non-trivial L2(p) groups that are
not simple groups are L2(6) and L2(15) since 6 = 2 × 3 and 15 = 3 × 5 so that they
are not powers of a prime number. The group L2(3) is also not a simple group since
it is merely the tetrahedral rotation group T , which is isomorphic to the alternating
group A4.

The L2(p) groups relevant to the study of the atomic shell are those groups where
p = 2� + 1, i.e., the groups where pis a small odd number corresponding to the
number of orbital states for the types of electrons under consideration. Some features
of these groups for p = 2� + 1 for � = 1, 2, 3, 4, 5, and 6 are given in Table 1. The
order of a L2(p) group can be determined by the following formula for odd p:

|L2(p)| = (1/2)p(p2 − 1) (1)

The factor 1/2 in Eq. 1 is removed if p is even so 60 = 4(16 − 1) = |L2(4)| =
|L2(5)| = (1/2)(5)(25 − 1) and in fact L2(4) and L2(5) are isomorphic as noted
above. Also for p = 2� + 1 Eq. 1 becomes

|L2(2� + 1)| = 2�(2� + 1)(� + 1) (2)

The groups listed in Table 1 correspond to the atomic p, d, f, g, h, and i shells,
respectively, and thus already go far beyond the atomic shells of obvious chemical
significance.

The finite group of interest for studying the atomic g shell is the L2(9) group, which
is the first L2(2�+1) group where 2�+1 is not a prime number but instead the square
of a prime number, namely 3. Of interest is the observation that whereas the L2(p)
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groups where p is a prime number have C p operations of period p, the L2(9) group
has no operations of period 9 (see Table 1).

The L2(p) groups that are isomorphic with alternating groups An , i.e., L2(3) ≈
A4, L2(5) ≈ A5, and L2(9) ≈ A6, are also the analogues of symmetry point groups
in n − 1-dimensional space Rn−1, since they describe the proper rotations of the
(n − 1)-dimensional simplex, which has n vertices with edges connecting every pair
of vertices leading to a total of (1/2)n(n −1) edges. The simplest non-trivial example
is the L2(3) group which is isomorphous to A4, which thus corresponds to the proper
rotations of the simplex in 3-dimensional space R3. This, of course, is the tetrahe-
dron (A4 ≈ T ) with 3 + 1 = 4 vertices and (1/2)(4 × 3) = 6 edges. The group
L2(5) ≈ A5 is not only the familiar three-dimensional point group I corresponding
to the proper rotations of the regular icosahedron but also a four-dimensional point
group corresponding to the proper rotations in R4 of the four-dimensional simplex
with 4 + 1 = 5 vertices and (1/2)(5 × 4) = 10 edges. Using this approach the group
L2(9) ≈ A6 is a 5-dimensional point group corresponding to the proper rotations in
R5 of the five-dimensional simplex with 5 + 1 = 6 vertices and (1/2)(6 × 5) = 15
edges. This defines a subgroup relationship SO(5) ⊃ L2(9) since SO(5) is an infinite
group containing all possible rotations in R5 and L2(9) is a finite group containing
only the 360 rotations in 5-dimensional space corresponding to symmetry operations
of the 5-dimensional simplex.

The use of the icosahedral group to study the atomic d shell is based on the sub-
group chain SO(5) ⊃ SO(3) ⊃≈ A5 ≈ L2(5). The relationship I ⊂ SO(3) relates
to the fact that I is a symmetry point group in three dimensions, i.e., a so-called
Euclidean group. The analogous subgroup chain to study the atomic f shell is SO(7)
⊃ G2⊃7O ≈ L2(7). The intermediate group G2 is not one of the standard rotation
groups in some space of n dimensions but instead corresponds to an exceptional rank
2 Lie algebra [16] with some mathematical resemblance to the rotation group SO(5).
The analysis above suggests the subgroup chain SO(9) ⊃ SO(5) ⊃ L2(9) ≈ A6 to
study the atomic g shell.

2.2 The spherical harmonics in L2(9)

Table 2 presents the character table of the group L2(9) ≈ A6. Since this is a non-
Euclidean group, i.e., L2(9) /⊂ SO(3), not all of the spherical harmonics individually
correspond to irreps or sums of irreps of L2(9). The following formula [17] was used
to determine the irreps or sums of irreps of L2(9) corresponding to the spherical
harmonics of interest:

χ(α) = sin[� + (1/2)]α
sin(α/2)

(3)

In this formula α is the angle corresponding to the Cn rotation, i.e., α = 2π/n.
Using Eq. 3 only spherical harmonics Y� having representations �(Y�) with dimen-

sions dim �(Y�) or dim �(Y�)±1 divisible by 9 are found to be individually reducible
to irreps or sums of irreps of L2(9) ≈ A6 (Table 3) analogous to the case with the atomic
f shell [12]. The reducible spherical harmonics in L2(9) with the lowest L values are
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Table 2 Character table for the group L2(9) ≈ A6

E 45C2 40C3 40C2
3 90C4 72C5 72C2

5

A 1 1 1 1 1 1 1

H1 5 1 2 −1 −1 0 0

H2 5 1 −1 2 −1 0 0

K1 8 0 −1 −1 0 (1/2)(1 − √
5) (1/2)(1 + √

5)

K2 8 0 −1 −1 0 (1/2)(1 + √
5) (1/2)(1 − √

5)

L 9 1 0 0 1 −1 −1

M 10 −2 1 1 0 0 0

Table 3 Reduction of representations of the spherical harmonics into sums of irreps of L2(9)

E 45C2 40C3 40C2
3 90C4 72C5 72C2

5

�(S) 1 1 1 1 1 1 1 A

�(P+D) 8 0 −1 −1 0 (1/2)(1 + √
5) (1/2)(1 − √

5) K2

�(G) 9 1 0 0 1 −1 −1 L

�(P+F) 10 −2 1 1 0 0 0 M

�(D+H) 16 0 −2 −2 0 1 1 K1 + K2

�(L) 17 1 −1 −1 1 −(1/2)(1 + √
5) −(1/2)(1 − √

5) K1 + L

�(P+K) 18 −2 0 0 0 (1/2)(1 + √
5) (1/2)(1 − √

5) K2 + M

�(D+I) 18 2 0 0 −2 (1/2)(1 + √
5) (1/2)(1 − √

5) H1 + H2 + K2

�(F+H) 18 −2 0 0 0 (1/2)(1 − √
5) (1/2)(1 + √

5) K1 + M

�(M) 19 −1 1 1 1 −1 −1 L + M

�(F+I) 20 0 2 2 −2 0 0 H1 + H2 + M

�(P+O) 26 −2 −1 −1 0 1+
√

5 1 − √
5 2K1 + M

�(D+N) 26 2 −1 −1 −2 1 1 H1+H2+K1+K2

�(H+K) 26 −2 −1 −1 0 1 1 K1 + K2 + M

�(R) 27 −1 0 0 1 −(1/2)(1 + √
5) −(1/2)(1 − √

5) K1 + L + M

�(P+Q) 28 0 1 1 2 (1/2)(1 + √
5) (1/2)(1 − √

5) A + K2 + L + M

�(F+N) 28 0 1 1 −2 (1/2)(1 − √
5) (1/2)(1 + √

5) H1+H2+K1+M

�(I+K) 28 0 1 1 −2 (1/2)(1 + √
5) (1/2)(1 − √

5) H1+H2+K2+M

the S, G, L, M, and R with the angular momentum quantum numbers L = 0, 4, 8, 9,

and 13, respectively (Table 3). The other spherical harmonics must be combined into
pairs in order for their representations �(Y�) to be reducible into sums of irreps of
L2(9) (Table 3).

The rules determining which pairs of spherical harmonics have combined represen-
tations �(Y�) that are reducible to irreps or sums of irreps of L2(9) ≈ A6 in the atomic
g shell are more complicated than those for the atomic f shell [12]. The condition
that dim �(Y�), dim �(Y�) ± 1, or dim �(Y�) ± 2 be divisible by 9 appears to be
necessary but not sufficient. For example, when dim �(Y�) = 16 (i.e., dim �(Y�)+ 2
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is divisible by 9) the D + H combination is reducible to irreps K1 + K2 but the P + I
combination cannot be reduced to a sum of irreps of L2(9) ≈ A6 (Table 3). Similarly,
when dim �(Y�) = 20 (i.e., dim �(Y�) − 2 is divisible by 9) the F + I combination is
reducible to irreps H1 + H2 + M whereas the D + K combination cannot be reduced
to a sum of irreps of L2(9) ≈ A6 (Table 3).

3 Irreps of continuous groups: root figures and their projections

3.1 Root figures and the corresponding root descriptors

The continuous groups SO(2�+1) are used to study the atomic shells of electrons with
angular momentum quantum number �. They correspond to the groups of all possible
proper rotations in a (2� + 1)-dimensional space with each dimension corresponding
to one of the 2� + 1 states of an electron with angular momentum quantum number �.
The groups SO(2� + 1) also correspond to the rank � Lie algebra [16] B�.

The irreps of the groups SO(2� + 1) can be depicted on root figures. The rank of
a Lie group corresponds to the dimensions of the corresponding root figure. For the
groups SO(2� + 1) relevant to the atomic d, f, and g shells, the root figures are based
on a square, a cube, and a tesseract or hypercube, respectively, of dimensionalities
2, 3, and 4, respectively, corresponding to the � values of the electrons under con-
sideration. The tesseract, used for the study of g orbitals and shown in Fig. 1 as a
two-dimensional projection, is a 4-dimensional hypercube with 16 vertices, 32 edges,
24 faces, and eight cubic cells. In the tesseract of Fig. 1 the cubic cell in the center
shares each face with another cubic cell accounting for seven of the eight cubic cells
of the tesseract. The eighth cubic cell of the tesseract has the outer faces of the large
outer cube in Fig. 1 as its six faces with its center point being at infinity.

An irrep of a group corresponding to a Lie algebra, including the SO(2�+1) groups
of interest in this work, can be described by dim(�) points on the root figure placed so
as to preserve the symmetry of the root figure including one or frequently more than
one point at the origin or center of the root figure. Here dim(�) is the dimension of
the irrep � in question. The irrep of a group corresponding to a Lie algebra of rank
� is described by a set of small integers corresponding to the coordinates of the root

Fig. 1 A two-dimensional
projection of a tesseract, the
four-dimensional analogue of
the cube
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Fig. 2 Root figures corresponding to the four lowest irreps of SO(5), used to study the atomic d shell. The
point with the highest coordinates is indicated by a solid circle (•) and the other single points are indicated
by open circles (◦). Double points in the center are indicated by 2. The axes used to define the coordinates
are indicated by dashed lines

figure point with the most positive values with the unit of measurement corresponding
to the shortest distance between adjacent points. This is illustrated in Fig. 2 by the
2-dimensional root figures of the irreps (10), (11), and (20) of SO(5), which are used
for the study of the atomic d shell. Analogous root figures for the atomic g shell are
described below. However, since they are necessarily four-dimensional based on the
tesseract (Fig. 1), drawings of them on the 2-dimensional page become unintelligible.

For groups with root figures in three or more dimensions attempts to use fig-
ures analogous to Fig. 2 rapidly become confusing. It is therefore useful to use root
descriptors of irreps describing the locations of points at vertices (v), at the midpoints
of edges (e), at the midpoints of faces ( f ), at the midpoints of cells (c), at the mid-
points of four-dimensional hypercells (h4), . . ., and at the center of the polytope (o)
with coefficients indicating the numbers of such points and exponents indicating the
number of lattice spacings of a set of points from the origin. In such root descriptors
points of the root figures belonging to smaller irreps can be enclosed in brackets []
whereas “new” points for a given irrep can be enclosed in parentheses (). The sum of
the coefficients of the root descriptor is the dimension of the corresponding irrep. Us-
ing this notation the root descriptors for lowest dimensional irreps of SO(5) depicted
in Fig. 2 for the atomic d shell are the following:

(00) : (o) (4a)

(10) : [o] + (4e) (4b)

(11) : [o] + [4e] + (o + 4v) (4c)

(20) : [o] + [4e] + [o + 4v] + (4e2) (4d)

For the atomic f shell the three-dimensional cube root figure of the SO(7) group can be
projected onto a hexagon corresponding to a projection of one of the skew hexagonal
Petrie polygons [18,19] of the cube corresponding to the subgroup relationship SO(7)
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⊃ G2 where G2 is a rank 2 Lie group corresponding to an exceptional Lie algebra
with 14 roots [16]. In order to illustrate the shorthand further in Eq. 4 Table 4 shows
the hexagonal projections of the cube root figures for the lowest dimensional irreps of
SO(7) along with the corresponding root descriptor using the notation above.

The study of the atomic g shell uses the group SO(9) corresponding to the rank 4
Lie algebra [16] B4. Table 5 shows the root descriptors for the locations of the points
on the underlying tesseract (Fig. 1) for the root figures of the lowest dimensional irreps
of SO(9). Upper case letters are used to designate the locations of the points on the
tesseract root figure of SO(9) to differentiate such designations from the locations of
the points on the cube root figure of SO(7).

In these root figures the order of appearance of new types of points is the oppo-
site of the dimensionality of the unit of which it is the center. Thus the root figure
corresponding to the (00. . .) irrep of dimension 1 on an n-dimensional polytope con-
tains only the center point of the polytope itself, where the coordinates are (00. . .).
Conversely, the root figure corresponding to the (11. . .) irrep is the first time that the
vertex points appear consistent with the fact that the highest coordinates of a vertex
point are (11. . .). Points at distances 2 for the root figure of SO(7) and even 3 for the
root figure of SO(9) along the midpoints of higher dimension units can appear before
the vertex points appear for the first time (see Tables 4 and 5). This will occur when
the dimension of the irrep (20. . .) is less than that of the irrep (11. . .), which is the
case for SO(2� + 1) where � ≥ 3 (i.e., for the atomic f shell and beyond).

3.2 Projection of root figures into lower dimensional root figures: connection with
subgroup relationships

Consider the subgroup chain SO(7) ⊃ G2 ⊃7O for the study of the atomic f shell.
The subgroup relationship SO(7) ⊃ G2 relates to a projection of the three-dimen-
sional cube root figure of SO(7) onto the two-dimensional hexagonal root figure of
G2 (Table 4). In this projection one of the C3 axes of the cube (i.e., a body diagonal)
is projected onto the center point (origin) of the hexagon so that both vertices passing
through this axis coalesce to a single point. This projection leads to relatively little
information loss since the eight points corresponding to the vertices of the cube in
the root figure of SO(7) are reduced only by one vertex to give seven points in the
hexagonal root figure of G2.

An alternative subgroup relationship for SO(7) is SO(7) ⊃ SO(5). This corresponds
to a root figure projection of the 3-dimensional cube of SO(7) to the square of SO(5)
(compare Fig. 2). The origin of the square of the root figure of SO(5) corresponds to
a C4 axis of the cube. The eight points corresponding to the vertices of the cube root
figure of SO(7) coalesce pairwise into the four vertices of the square root figure of
SO(5). Thus in the root figure projection for SO(7) ⊃ SO(5) eight cube vertex points
become only four points in the square root figure of SO(5) whereas in the root figure
projection for SO(7) ⊃ G2 the eight cube vertex points are only reduced to seven points
in the hexagonal root figure of G2. Thus the subgroup relationship SO(7) ⊃ G2 leads
to less information loss and is therefore more useful than the subgroup relationship
SO(7) ⊃ SO(5).
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Table 4 The root figures corresponding to the lowest dimensional irreps of SO(7) and the corresponding
root descriptors [The 3-dimensional cube root figures of SO(7) are viewed as projected onto the 2-dimen-
sional hexagon root figures of G2]

W(abc) Dimension Root figures

(000)

•

1 (o)
(100)

• +
•o o

o• •

7 [o] + (6 f )

(110)

• +
•o o

o• • + 2
•• •
•• ••

• •
•

••

21 [o] + [6 f ] + (2o + 12e)

(200)

• +
•o o

o• • + 2
•• •
•• •• •

••
+

• •

27 [o] + [6 f ] + [2o + 12e] + (6 f 2)

(111)

• + 
• o o  

o • •  + 2 
• • •  
• • •  • 

• •  
• 

• • 
+ + 

• 
• 

• 
• 

•

•
2 

35 [o] + [6 f ] + [2o + 12e] + [6 f 2] + (8v)
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Table 5 The root descriptors for the lowest dimensional irreps of SO(9) and the corresponding root de-
scriptors

Irrep Dimension Root descriptor

(0000) 1 (O)

(1000) 9 [O] + (8C)

(1100) 36 [O] + [8C] + (3O + 24F)

(2000) 44 [O] + [8C] + [3O + 24F] + (8C2)

(1110) 84 [O] + [8C] + [3O + 24F] + [8C2] + (32E + 8C3)

(1111) 126 [O] + [8C] + [3O + 24F] + [8C2] + [32E + 8C3] + (2O + 24F2 + 16V )

Table 6 Relationships between the irreps of SO(9) and those of SO(7)

SO(9) Irrep Dimension Irreps of SO(7) Dimensionality breakdown

(0000) 1 (000) 1 = 1

(1000) 9 (100) + 2(000) 9 = 7 + (2 × 1)

(1100) 36 (110) + 2(100) + (000) 36 = 21 + (2 × 7) + 1

(2000) 44 (200) + 2(100) + 3(000) 44 = 27 + (2 × 7) + (3 × 1)

(1110) 84 (111) + 2(110) +(100) 84 = 35 + (2 × 21) + 7

(1111) 126 3(111) + (110) 126 = (3 × 35) + 21

The cube → hexagon projection describing the subgroup relationship SO(7) ⊃ G2
relates to the fact that the S6 axis of the cube corresponds to a skew hexagon as a Petrie
polygon in the cube. In this connection a Petrie polygon is defined by a path starting
from a given vertex and taking alternating left and right turns until the original vertex
is reached again [18,19]. An analogous construction in hyperspace does not appear to
be useful for analogous subgroup relationships and, in any case, there do not appear
to be suitable exceptional Lie algebras [16] of rank <4 to generate useful subgroups
for SO(2� + 1) for � ≥ 4. Thus for the study of the atomic g shell, the best alternative
is to study the subgroup relationship SO(9) ⊃ SO(5) since the relevant finite group
L2(9) ≈ A6 is known to be a subgroup of SO(5) being the symmetry point group of
the 5-dimensional simplex (see above). For this purpose the intermediate subgroup
SO(7) is considered so that the corresponding projections for the resulting subgroup
chain SO(9) ⊃ SO(7) ⊃ SO(5) correspond to a stepwise dimension reduction from a
4-dimensional tesseract (Fig. 1) to a 3-dimensional cube and finally to a 2-dimensional
square.

Considering the subgroup relationship SO(9) ⊃ SO(7) leads to the relationships
between their irreps summarized in Table 6 including the indicated dimensionality
breakdown. Similarly the subgroup relationship SO(7) ⊃ SO(5) leads to the relation-
ships between their irreps summarized in Table 7. Taken together the information in
these tables can decompose the SO(9) irreps to sums of SO(5) irreps for the subgroup
chain SO(9) ⊃ SO(5) ⊃ L2(9) ≈ A6 used for the atomic g shell.
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Table 7 Relationships between the irreps of SO(7) and those of SO(5)

SO(7) Irrep Dimension Irreps of SO(5) Dimensionality breakdown

(000) 1 (00) 1 = 1

(100) 7 (10) + 2(00) 7 = 5 + (2 × 1)

(110) 21 (11) + 2(10) + (00) 21 = 10 + (2 × 5) + 1

(200) 27 (20) + 2(10) +3(00) 27 = 14 + (2 × 5) + (3 × 1)

(111) 35 3(11) + (10) 35 = (3 × 10) + 5

The information in Tables 6 and 7 can be derived from the root descriptors for root
figures of the relevant irreps. Consider, for example, one of the simplest non-trivial
problems of this type, namely the decomposition of the irrep (110) of SO(7) into a
sum of irreps of SO(5). The root descriptor for the irrep (110) is [o] + [6 f ] + (2o +
12e). Projecting the 14 points (2o+ 12e) from the cube root figure of SO(7) to the
square root figure of SO(5) gives a collection of 14 points corresponding to the SO(5)
root descriptor 2o + (2 × 4)e + 4v = 2o + 8e + 4v. Note that four of the 12 edge
midpoints of the SO(7) cube are projected onto the vertices of the SO(5) square and
the remaining 8 edge midpoints of the SO(7) cube are projected doubly onto edge
midpoints of the SO(5) square. The sum of the root descriptors for the (11) and (10)
irreps of SO(5) is seen to be the collection of 15 points on the root figure labeled {[o]
+ (4e)} + {[o] + [4e] + (o + 4v)} from Eq. 4b and 4c, which reduces to 3o + 8e + 4v.
The “extra” point is an origin point leading to the following relationship:

(2o + 12e) in SO(7) = (11) + (10) − (00) in SO(5) (5)

Similarly, the remaining seven points of the cube SO(7) root figure for the irrep
(110), namely (o+6 f ), project onto the square SO(5) root figure as 3o+4e. The irrep
(10) of SO(5) has the root descriptor o + 4e (Fig. 2) thereby leading to the following
relationship:

(o + 6 f ) in SO(7) = (3o + 4e) in SO(5) = (10) + 2(00) in SO(5) (6)

Combining Eqs. 4 and 5 give the relationship (110) in SO(7) = (11) + 2(10) + (00)

in SO(5) as indicated in Table 7.
An analogous procedure can be used to derive the more complicated relationships

listed in Tables 6 and 7.

4 Applications to the atomic g shell

The lobal structure of g orbitals can become difficult to visualize since g orbitals
can have up to 12 lobes when |m| = 2 and 3. Instead g orbitals are conveniently
depicted as orbital graphs [20]. In this connection orbital graphs are signed bipartite
graphs where the vertices correspond to the lobes of the orbitals with the correspond-
ing signs. The edges correspond to nodes between adjacent lobes of opposite sign.
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Fig. 3 Orbital graphs for the
five types of g orbitals according
to the values of |m| +
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The nine g orbitals can be divided into five types depending on the absolute value of
m where 0 ≤ |m| ≤ 4. The corresponding orbital graphs are depicted in Fig. 3 [20].
Note that |m| = 0 corresponds to a single g orbital, namely the g(z4) orbital, whereas
the other orbital graphs correspond to pairs of g orbitals where m = ±1,±2,±3,
and ±4 inversely relating to their extent along the z axis. These orbital graphs have
distinctive shapes, namely triple square, double cube, hexagonal prism, and octagon,
respectively.

A comprehensive list of the atomic g shell terms is given by Wybourne and is too
complicated to list here; the reader is referred to the Wybourne paper [4] for details.
Table 8 lists the terms corresponding to the irreps of SO(9) taken from the Wybourne
paper, where the subscripts after a term indicate the number of times it appears in the
given irrep. The sequence of letters for the Lvalues of the terms from 0 to 20 in the
atomic g shell used by Wybourne [4] is S,PDFGH,IKLMN,OQRTU,VWXYZ so that
the familiar letters S and P are used for the terms with L = 0 and 1 and the letters E
and J are avoided.

The terms for the atomic g shell (Table 8) go all the way up to Z terms where L =
20 for the 2772-dimensional irrep (2222) consistent with the following equation:

max(L) = �(� + 1) (7)

In Eq. 7 L refers to the term in question and � refers to the angular momentum
quantum number for the atomic shell in question, i.e., � = 1, 2, 3, 4 for the atomic
p, d, f , and g shells, respectively. Equation 7 can be derived from the observation that
the maximum L value occurs when electron pairs appear in the � boxes where the m
values are positive, i.e., 1 ≤ m ≤ � and all of the boxes are empty where the m values
are negative.

The atomic g shell is seen from Table 8 to be far too complicated to discuss all of
the terms in detail. Of particular interest are the terms of maximum multiplicity corre-
sponding to the irreps with only 0’s and 1’s, namely (0000), (1000), . . ., (1111). For
g0 to g9 there are only unpaired electrons or empty boxes whereas from g9 to g18 there
is at least one electron for each mvalue from +4 to −4, i.e., no empty boxes. Table 9
lists these irreps with the terms grouped in parentheses according to the corresponding
irreps of the finite group L2(9) ≈ A6 coming from Table 3 using parentheses to define
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Table 8 The terms in the atomic g shell corresponding to the irreps of SO(9)

Irrep Dimension Terms

(0000) 1 S

(1000) 9 G

(1100) 36 PFHK

(1110) 84 PF2GHIKM

(1111) 126 SD2FG2HI2KLN

(2000) 44 DGIL

(2100) 231 PD2F2G2H3I2K2L2MNO

(2110) 594 P3D3F5G5H6I5K5L4M4N2O2QR

(2111) 924 SP3D6F6G8H8I8K7L7M5N4O3Q2RT

(2200) 495 S2D4F2G5H3I5K3L4M2N3OQ2T

(2210) 1650 S3P4D8F9G12H11I13K11L11M9N8O5Q5R3T2UV

(2211) 2772 SP9D10F17G16H21I18K20L16M16N12O11Q7R6T3U3VW

(2220) 1980 S4P3D8F9G13H10I15K11L12M10N10O6Q7R4T3U2V2X

(2221) 4158 S2P10D14F20G22H25I25K26L23M22N18O16Q12R10T7U5V3W2XY

(2222) 2772 S3P4D11F9G15H15I16K14L17M12N13O10Q9R6T6U3V3W2XZ

Table 9 The terms in the atomic g shell corresponding to the irreps of SO(9) for the maximum multiplicity
configurations grouped according to the irreps of L2(9)

g configuration Irrep Dimension breakdown Terms

g0, g9, g18 (0000) 1 = 1 S

g1, g8, g10, g17 (1000) 9 = 9 G

g2, g7, g11, g16 (1100) 36 = 10 + 26 (PF)(HK)

g3, g6, g12, g15 (1110) 84 = 10 + 18 + 9 + 28 + 19 (PF)(FH)G(IK)M

g4, g5, g13, g14 (1111) 126 = 1+18+26+18 +(2×9)+28+17 S(DI)(DN)(FH)G2(IK)L

the groupings. Note that these groupings have dimensions 1, 9, 10, 17, 18, 19, 26, and
28 so that either their dimensions or their dimensions ±1 are divisible by nine. The
corresponding irreps of L2(9) for each of these groupings are listed in Table 3. In this
way the subgroup chain SO(9) ⊃ SO(5) ⊃ L2(9) ≈ A6 can be used to make some
sense out of the otherwise complicated and forbidding list of terms for the atomic g
shell given in Table 8.
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